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Abstract Mechanical lightweight structures often tend
to unwanted vibrations due to disturbances. Passive
methods for increasing the structural damping are often
inadequate for the vibration suppression, since they
include additional mass in the form of damping materi-
als, additional stiffening designs or mass damper. In
this paper the concept of an active vibration control
for piezoelectric light weight structures is introduced
and presented through several subsequent steps: model
identification, controller design, simulation, experimen-
tal verification and implementation on a particular ob-
ject—piezoelectric smart cantilever beam. Special
attention is paid to experimental testing and verification
of the results obtained through simulations. The effi-
ciency of the modeling procedure through the subspace-
based system identification along with the efficiency of
the designed optimal controller are proven based on the
experimental verification, which results in vibration
suppression to a very high extent not only in compar-
ison with the uncontrolled case, but also in comparison
with previously achieved results. The experimental
work demonstrates a very good agreement between
simulations and experimental results.

Keywords Active vibration control . Piezoelectric cantilever
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1 Introduction and motivation

High efficiency, functionality, quality and assuring a high
profitability are the main requirements for products in
today’s world. In mechanical and civil engineering, these
requirements are manifested in the application of thin and
lightweight structures. Mechanical lightweight structures
often tend to unwanted vibration, which may result in dis-
turbing sound radiation or even in damage of components,
[1]. Passive methods for increasing the structural damping
are often inadequate, because they always include the use of
additional mass in the form of damping materials, additional
stiffening designs or mass damper.

The concept of active vibration control has become a
useful approach in the recent years, due to improvement of
the vibration susceptibility of lightweight structures with the
least possible increase in mass. For the active vibration
control, supporting mechanical structure is supplied with
sensors and actuators operated by a controller. High integra-
tion of the structural system with active materials (actuators/
sensors) and control is regarded as a smart structure due
to its ability to adapt to environmental changes. The
technology of smart materials and structures, especially
piezoelectric smart structures, has become mature over
the last decade. One promising application of piezoelectric
smart structures is the control and suppression of unwanted
structural vibrations [2].

2 State of the art

Smart structures have been intensively investigated in the
past years. In numerous studies the smart structure commu-
nity has developed a large variety of sophisticated analysis
approaches, control methods and optimization procedures.
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A review of the state of the art of smart structures is given by
Chopra [3] and some other examples of analytical and exper-
imental studies concerning the actuation and vibration control
of smart piezoelectric structures can be found in [4–10].

Investigation of the vibration suppression of flexible
structures with integrated piezoelectric active materials has
been subject of a very high scientific and practical interest
over the past years. One benchmark test example, vibration
suppression of a piezoelectric cantilever beam, represents in
the scientific community a research object of a special
interest for many researches within the area, since it offers
the possibility to investigate, test and compare different
approaches, techniques and results.

In this paper an overall approach to active control of
piezoelectric structures is presented and implemented for
the vibration suppression of a smart cantilever beam
subjected to external disturbances. The procedure
involves several subsequent steps: model identification,
controller design, simulation, experimental verification
and implementation.

Different approaches to modeling and vibration suppres-
sion of a piezoelectric cantilever beam have been investi-
gated and reported in the literature. In [11] for example the
effect of different types of controllers to vibration reduction
of the beam have been studied. In [12] the feedback control
with a time delay was used in the investigation of vibration
control for the primary resonance of a cantilever beam. The
analytical results are compared with numerical simulations.

With design and implementation of the spatial H∞

controller has been dealt with in [13]. Here the standard
modeling approach by modal truncation was applied and the
H∞ controller was designed to suppress the first two flexural
vibrations of the beam.

Modeling and controller design technique used in the
present paper was successfully applied for the vibration
suppression of higher bending modes then investigated in
[12, 13]. Proposed controller in combination with augment-
ed plant dynamics [6–8] can be successfully used in the
presence of combined disturbances and for the vibration
suppression of even higher modes.

In [14] active vibration control of a flexible cantilever
beam was studied using the Filtered-X LMS algorithm,
applied to design a control law for a piezoelectric actuator.
In comparison with this algorithm, the technique with the
optimal LQ controller and Kalman estimator proposed and
applied in the present paper results in considerably faster
controlled response in the time domain, and in higher vibra-
tion magnitude suppression in the frequency domain.

Paper by Tjahyady et al. [15] also deals with the vibration
control of a flexible cantilever beam. The control technique
applied here is adaptive resonant control. For the controller
design purposes, the model of the beam, i.e. its first three
natural frequencies were estimated using the RLS algorithm.

In the present paper the model development procedure is
based on the subspace based identification algorithm
(n4sid). The proposed identification procedure is of special
interest if a state space model of the structure is required for
the subsequent design and analysis phases. State space
models are especially convenient for the multiple-input
multiple output (MIMO) control design problems. In [14]
a single-input single-output model was considered.

Further literature records also document implementation
of active vibration control of piezoelectric cantilever beams.
The controller applied in [16] for the active vibration control
of a flexible steel cantilever beam with piezoelectric actua-
tors is PID compensator with optimized parameters. In [17]
the problem of a semi-analytical analyzing of the dynamic
steady-state response of locally nonlinear beams under pie-
zoelectric actuation has been treated. Special attention has
been paid to elastic beam structures with time-variant im-
posed piezoelectric curvature. Other examples of active
piezoelectric cantilever beams and their vibration compen-
sation are presented in [18–22]. Recently published papers
further document strong interest of the scientific community
in the field of active vibration suppression of piezoelectric
structures. In [20] the vibration suppression of a smart
flexible beam has been performed by active fuzzy logic
based control, using piezoelectric sensor and actuator. Sim-
ilarly, a neuro-fuzzy control supplemented by proportional-
derivative PD control based on genetic algorithm is pro-
posed in [23] for vibration suppression of a smart piezoelec-
tric rotating truss structure. The contribution confirms that
elementary smart structures, like beam or truss structures,
can successfully be implemented as elements of more com-
plex smart systems with active piezoelectric based control.
Another work, [24] documents again the implementation of
PD controller for vibration suppression of a piezoelectric
sandwich beam. In this case the modeling of the beam
dynamics was performed by highly nonlinear ordinary dif-
ferential equation. In order to model piezoelectric properties
of smart structures, in [25] the authors have considered the
implementation of a user-defined piezoelectric finite shell
element. The element efficiency was tested through several
examples of a bimorph piezoelectric beam. Modeling ap-
proach applied in [26] is an approximate formulation for the
coupled electromechanical problem of forced vibration of a
simply supported inelastic sandwich beam with piezoelectric
layers. Single-frequency forced vibrations are damped in this
case by harmonic voltages applied to the external piezoelectric
active layers. Some of other recent studies on active piezo-
electric beams are presented in [27–29]. Mentioned references
are only some of the numerous investigations of the controlled
piezoelectric cantilever beam behavior, with the aim of vibra-
tion suppression and they all treat the same or similar objects
in a different manner. All these examples document a tremen-
dous interest of the scientific community in the problem of the
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smart beam control and vibration suppression and therefore
confirm the importance of this filed, which is still not entirely
exploited.

In this paper, the authors propose the subspace identifica-
tion procedure for the state space model development of the
aluminium cantilever beam with four piezoelectric patches. In
this way the MIMO model is identified, which can be suc-
cessfully implemented in the controller design procedure. For
the controller design an optimal LQ technique is proposed in
combination with the Kalman filter based estimation of the
plant model state variables. According to the authors’ best
knowledge, this methodology has not been previously imple-
mented for the vibration suppression of cantilever piezoelec-
tric beams. Special attention is paid to experimental testing
and verification of the results obtained through simulations.
The efficiency of the modeling procedure through the system
identification along with the efficiency of the designed con-
troller are proven based on the experimental verification,
which results in vibration suppression to a very high extent
not only in comparison with the uncontrolled case, but also in
comparison with previously achieved results. The experimen-
tal work demonstrates a very good agreement between simu-
lations and experimental results.

In the first part of the paper description of the active
structure (cantilever beam with piezoelectric patches) and
its modeling are presented. Modeling procedure involves
experimental subspace-based system identification. Second
part is devoted to an optimal controller design, which incor-
porates Kalman filter for estimation of the unmeasurable
state variables. Simulation of the control action is performed
for several excitation cases. Finally, the controller was ver-
ified experimentally using a hardware-in-the-loop testing
system. Experimental results prove the efficiency of the
controller and the reliability of the identified model, which
was used as the basis for the controller design.

3 Mechanical structure

Flexible smart structure shown in Fig. 1 is used as an
experimental object to test the effectiveness of the proposed

vibration suppression method. The smart structure consists
of a cantilever aluminum beam (Young’s modulus 70 GPa
and density 2.7 g/cm³) and four piezoelectric patches
(DuraActTM P-876.A15), which are attached to the beam,
two on each side of the beam. These four patches are used as
actuators to enable active vibration control of the beam.

A scanning digital laser Doppler vibrometer (VH-1000-D),
which acts as a sensor, is used to measure the velocity of the
bending vibration at a certain point, near the free end of the
beam. The sensor provides the feedback signal in the active
control algorithm as presented in Fig. 2.

In this experiment the plant has four voltage inputs, one
input for each piezoelectric actuator, and one output, which
is recorded from the sensor. For implementing the controller
in real time, a dSPACE digital data acquisition and real-time
control system is used. The dSPACE uses a DS1005 digital
signal process board for real-time control implementations.
The dSPACE system is connected both to an analog-to-
digital converter ADC Board DS2004 and to a digital-to-
analog converter DAC Board DS2102, in order to process
the continuous-time sensor signal and for generating a
continuous-time series of control signal, respectively. The
range of the DAC board is ±10 V. Since for the actuation of
the piezoelectric patches much higher voltages are required,
the control signal is fed out of the DAC board through the
piezo-amplifier to the piezoelectric actuators. The control
law, for the active suppression of the bending vibration, is
designed on MATLAB platform and then downloaded to the
dSPACE digital data acquisition and real-time control sys-
tem to implement the proposed control algorithm.

An experimental modal analysis was performed in order to
determine the eigenmodes of interest for the controller design.
Longitudinal and torsional modes, which are not relevant for
the bending vibration suppression, were not considered for the
controller design. Bending mode shapes obtained through the
experimental modal analysis are represented in Fig. 3. The
experimental modal analysis has also shown that the dominant
mode of the flexible beam is its first mode and is the major
concern for vibration suppression.

4 System modeling

Controller design for smart structures relies on accurate mod-
eling of the system dynamics. Models of smart structures can
be obtained either by a numerical modeling based on finite
element method (FEM) [30] or by an experimental model
identification approach, the so-called subspace-based system
identification [31]. The goal of the identification procedure in
general is to find a model which can with sufficient accuracy
predict the behavior of a system under consideration based on
the measured input and output data. In case of the subspace-
based identification the output of the identification procedure isFig. 1 Geometry and layout of the smart structure
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a state space model. The subspace-based identification is as an
alternative to numerical modeling using the FEM approach,
since in case of availability of the real structure it enables a
successful modeling of multiple-input multiple-output
(MIMO) systems based on the measurement of the input and
output signals.

Furthermore for MIMO systems the state space rep-
resentation is the only model that is convenient for the
work in the computer aided control system design. Most
optimal controllers can be effectively computed in terms
of the state space model. Practical aspects of imple-
menting the subspace identification methods for

industrial applications are another reason for the consid-
eration of this approach. Many industrial processes and
structures can be accurately described by discrete-time
linear state space models. Therefore in this paper the
subspace identification is used to obtain experimentally
a model of the piezoelectric smart structure in the state-
space form.

4.1 Subspace-based state-space system identification

The state space representation of an nth-order system with m
inputs and l outputs which is to be identified from the input–

Fig. 2 Sketch of the
experimental set-up

Fig. 3 Experimentally
determined bending
eingemodes of interest
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output measurement data can be expressed in its general
deterministic-stochastic form [32]:

x½k þ 1� ¼ Φx½k� þ Γu½k� þ w½k�
y½k� ¼ Cx½k� þ Du½k� þ v½k� ð1Þ

Since the subspace identification is based on sampled
input/output measurement sequences u[k] and y[k], the
method applies to a discrete-time form of the resulting
state-space model, with discrete-time state and control
matrices Φ and Γ, respectively. The process noise and
the measurement noise vector sequences w[k] and v[k]
are white noise with zero mean and with covariance
matrix:

E
w½i�
v½j�

� �
w½i�T v½j�T

� �� �
¼ Q S

ST R

� �
; ð2Þ

The task of the subspace identification is to express the
input-state-output relationships in the state space form
(1) and to determine the order n of the unknown system

and the system matrices Φ 2 Rn�n, Γ 2 Rn�m, C 2 Rl�n,

D 2 Rl�m as well as the covariance matrices Q 2 Rn�n ,

S 2 Rn�l, R 2 Rl�l of the noise sequences w[k] and v[k].
In the subsequent derivations, only the pure determinis-
tic case will be considered as described in [33].

Measured input and output data are arranged into block
Hankel matrices [31] defined in the following way:

U ¼ U0 2i�1j ¼

u0 u1 u2 � � � uj�1

u1 u2 u3 � � � uj
..
. ..

. ..
. . .

. ..
.

ui�1 ui uiþ1 � � � uiþj�2

ui uiþ1 uiþ2 � � � uiþj�1

uiþ1 uiþ2 uiþ3 � � � uiþj

..

. ..
. ..

. . .
. ..

.

u2i�1 u2i u2iþ1 � � � u2iþj�2

2
6666666666664

3
7777777777775

ð3Þ

The output block Hankel matrix Y is defined in a similar
way. The purpose of writing the matrix in this manner is to
build the relations between the input, output and state
sequences in a matrix form. Using the matrix notation, the
system equation can be written as:

Y½k� ¼ Gx½k� þHU½k� ð4Þ

The matrix G is the extended observability matrix built as

G ¼

C
CΦ
CΦ2

..

.

CΦi�1

2
66664

3
77775 2 Rli�n ð5Þ

and H is the lower block triangular Toeplitz matrix of
impulse responses from u to y given by

H ¼

D 0 0 � � � 0
CΓ D 0 � � � 0
CΦΓ CΓ D � � � 0
..
. ..

. ..
. . .

. ..
.

CΦi�2Γ CΦi�3Γ CΦi�4Γ � � � D

2
66664

3
77775 2 Rli�n ð6Þ

For a deterministic case the problem is simplified to deter-
mining G and H by computing the singular value decom-
position (SVD) of U in the first step

U ¼ PSQT ¼ Pu1 Pu2½ � Σu 0½ � QT
u1

QT
u2

� �
ð7Þ

If matrix U has dimension m� n and rank r, then the
partition in (7) is performed as follows:

P ¼ p1 � � � prj prþ1 � � � pm½ � ¼ Pu1 Pu2½ � ð8Þ

Q ¼ q1 � � � qrj qrþ1 � � � qm½ � ¼ Qu1 Qu2½ � ð9Þ

where pi are the left singular vectors of U. It can be
shown that they are eigenvectors of UUT. Vectors qi are
the right singular vectors of U. It can be shown that
they are eigenvectors of UTUMultiplying (4) by Qu2

matrix G can be determined from a SVD of YQu2 Then
matrix C is obtained as the first row of the observabil-
ity matrix G, and matrix Φ is calculated from: G ¼ GΦ
applying pseudo inverse, where G is obtained by drop-
ping the last row of G. Matrix G represents the matrix
obtained by dropping the first row of G. For the calcu-
lation of the Γ and D matrices, (4) is multiplied by the
pseudo inverse of U on the right and by PT

u2 from (7) on
the left. Thus the equation is reduced to

PT
u2YU

�1 ¼ PT
u2H ð10Þ

After rearranging, (10) can be solved for Γ and D using the
least squares, see (6). In this way the system parameters in the
form of state-space matrices of the model (1) are identified
using the subspace-based identification method.

4.2 Identified state-space model

System identification was performed on the MATLAB plat-
form using the subspace identification method n4sid [4, 5,
34, 35]. For the system identification an arbitrary number of
inputs and outputs can be organized in time series of the
input–output measurement data. As the output of the algo-
rithm the system matrices of the state-space model (1) are
obtained.
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Band-limited white noise excitation signals were applied
to the four piezoelectric patches as input data and the veloc-
ity of the bending vibration was measured as output data for
the identification of a state-space model applying the n4sid
algorithm. The measurement was carried out for 10 s in
discrete time using the sampling period Ts00.001 s. In order
to estimate an accurate system order, the identification pro-
cedure was repeated several times with different model
orders. Finally, an adequate model with the system order
n012 was obtained. The identified model accurately cap-
tures the dynamics of the structure within the frequency
range of 1 Hz to 500 Hz. Further increase of the system
order would not significantly contribute to the improvement
of the frequency response in the considered frequency
range. On the other hand the computational effort for the
controller design would become higher for the increased
system order. Furthermore, the identified model of the order
12 fulfills the controllability and observability conditions
[36]. The frequency response functions obtained from the
identified model for the respective sensor/actuator pairs are
represented in Fig. 4. The resonant frequencies at f10
13.4 Hz (84.2 rad/s), f2072.5 Hz (455.5 rad/s), f30198 Hz
(1244 rad/s) and f40392 Hz (2463 rad/s) correspond to the
bending eigenmodes represented in Fig. 3.

5 Model-based controller design

For the purpose of reducing the vibrations of smart beams,
caused by a mechanical disturbance, a negative feedback
control loop can be established, where the state variables in
the state space representation of the structural model are

amplified and fed back to the actuators. Thus, assuming a
negative feedback control law proportional to the state var-
iables of the system, the control voltage can be written as:

u½k� ¼ �Lx½k�; ð11Þ
where L represents the feedback gain matrix defined accord-
ing to the control law of interest and x is the state vector of
the design model. Substituting (11) into the state equation of
the state space representation, the closed-loop system state
equation can be written as

x½k þ 1� ¼ Φ� ΓLð Þx½k�: ð12Þ
The feedback gain matrix L controls the system response
through the modification of the closed-loop system poles.
Therefore, it is important to find an adequate gain in order to
achieve a better damping and quick response of the
closed-loop system.

5.1 Optimal control

For the vibration control of smart structures the value of the
feedback gain matrix L, described in previous section, is
calculated using the optimal control algorithm based on the
optimal LQ regulator design. The basic idea of the optimal
LQ controller design relies on the feedback gain control law
as given in (11), assuming that all the states of the system
are completely controllable. The controller design task is to
determine the control law in such a way that the perfor-
mance index

J ¼
X1
k¼0

x½k�TQx½k� þ u½k�TRu½k�
� 	

ð13Þ
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Fig. 4 Frequency response diagrams for the actuator/sensor pairs obtained from the identified state space model
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is minimized. The matrices Q and R in (13) are the designer
specified symmetric positive definite weighting matrices.
The feedback gain matrix L of the optimal LQ control law
for a discrete-time state space system is determined through
the algorithm for the synthesis of a linear quadratic (LQ)
state-feedback regulator by determining:

L ¼ R þ ΓTPΓ

 ��1

ΓTPΦ; ð14Þ
where P is obtained as a solution of the discrete-time Riccati
equation in the form [37]:

ΦTPΦ�P�ΦTPΓ R þ ΓTPΓ

 ��1

ΓTPΦþQ ¼ 0 ð15Þ
which can be, after rearrangement, written in the form [4]:

P ¼ QþΦTPΦ�ΦTPΓ R þ ΓTPΓ

 ��1

ΓTPΦ: ð16Þ

The choice of the weighting matrices Q and R in the
performance index is designer dependant and it is based
on the relative importance of the various states and controls.
The trade-off between the control effort and the system
response determines the choice of the weighting matrices.
In general, the weighting matrices are chosen in such a way
that large input signals are penalized by increasing the value
of the matrix R and faster response of appropriate state
variables is achieved by increasing the values of appropriate
elements in the weighting matrix Q.

5.2 State estimation using Kalman filter

Since the state variables of the state space model obtained
through the system identification procedure do not represent
variables which can be directly measured und thus cannot be
used directly in the feedback gain control law (11), their
estimation is necessary using an observer. Observer design
which is based on the observer pole assignment, like in the
case of the Luenberger observer [38], is strongly dependent
on the choice of the observer poles and their relation to the
plant and closed-loop poles. Such observer design would in
turn require appropriate observer pole shifting with regard to
the closed-loop poles, since the observer poles must be
“faster” then the plant, i.e. closed-loop poles, which means,
they should be pulled further left from the imaginary axis in
the s-plane, by the continuous-time controller design. The
controller considered in this paper is a discrete-time control-
ler, designed for a discrete-time plant model obtained
through the subspace identification procedure. Therefore
the pole shifting is not a very convenient technique for the
observer design when applied to discrete-time models. A
comprehensive methodology requires thinking in terms of
both the continuous-time and mapped discrete-time z-plane
pole locations. Furthermore, the pole assignment technique
is not convenient for the multiple-input multiple-output

(MIMO) systems, since it does not provide a unique solu-
tion. Optimal LQ controller on the other hand provides an
optimal solution in the sense of minimizing the performance
index (13), by finding an appropriate trade-off between
penalizing large control inputs and speeding up the state
variables’ convergence towards the zero steady-state value,
penalizing in this way large state estimation errors in the
state transient responses. Pole placement procedure would
not give satisfactory result in this case, actually it would
require too much trial-and-error effort to find an appropriate
pole combination which would result in a satisfactory
closed-loop response. This is the reason why the linear
quadratic controller represents the authors’ favorable feed-
back design method in this case.

On the other hand, the stability of the closed-loop system
with an observer designed based on the pole placement pro-
cedure is very sensitive to the choice of the observer poles. In
the presence of the process and/or measurement noise, the
observer designed for ideal case without noise may introduce
instability of the closed-loop. The Kalman filter as observer in
the feedback closed-loop system overcomes this drawback. It
can successfully meat the requirements of the state estimation
in the presence of the white-noise type random measurement
or process noise [4]. Therefore the states of the identified
model are estimated here by the Kalman estimator, which
plays the observer role in the closed loop-system. For a
continuous time system, the Kalman estimator equations have
in principle the same form as the full-order observer equa-
tions, the difference is in the assessment of the observer gain
matrix. In the case of Kalman estimator, the estimator gain
matrix must take into account for the presence of measure-
ment and/or process noise and it is designed in such a way to
minimize the observer estimation error. For the practical im-
plementation within a hardware-in-the-loop system with
dSPACE, considered in this paper in combination with
discrete-time identified state space model, a discrete-time Kal-
man estimator is designed.

In a general form of the state space model, the state and
output equations are influenced by the process and measure-
ment noise. A general discrete-time state space model,
which includes the process noise w[k] and the measurement
noise v[k], is assumed in the form (1).

Process and measurement noise represent white noise,
i.e. they are random sequences with zero mean:

E w½k�f g ¼ E v½k�f g ¼ 0 ð17Þ

and they have no time correlation:

EwðiÞwTðjÞ ¼ EvðiÞvTðjÞ ¼ 0 if i 6¼ j: ð18Þ
Covariances or mean square noise levels are defined as:

E w½k�wT½k�� 
 ¼ Rw; E v½k�vT½k�� 
 ¼ Rv ð19Þ
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The underlying idea of the estimator design is to construct
an appropriate model of the plant dynamics, such that the
state variables of the model can represent the estimates of
the real state variables. This underlying idea is extended in
the case of a prediction estimator by introducing the feed-
back system with the estimated output error as the feedback,
where measurements at the time k are used for obtaining an
estimate of the state vector at the time k+1. Design of the
Kalman estimator is performed according to the algorithm
supported by the Matlab/Control System Toolbox. The al-
gorithm is explained in more detail in [4, 33]. A summary of
the Kalman estimator equations is formulated as:

bx k þ 1 kj½ � ¼ Φbx k k � 1j½ � þ Γu k½ �
þK y k½ � � Cbx k k � 1j½ � � Du k½ �ð Þ ð20Þ

by½k kj �bx½k kj �
� �

¼ C I�MCð Þ
I�MC

� �bx k k � 1j½ �

þ I� CMð ÞD CM
�MD C

� �
u½k�
y½k�

� �
ð21Þ

where:bx½k k þ 1j � represents the estimate of x[k+1] given
the measurements y½k�; y½k � 1�; ::: bx½k kj � is the estimate of
x[k] given the measurements: y½k�; y½k � 1�; ::: and by½k kj �
are corresponding output estimates.

The gain matrices K and M are derived by solving
corresponding discrete Riccati equation. The innovation
gain M is used to update the prediction bx½k k � 1j � using
the new measurement y[k]. K represents the feedback gain
matrix of the prediction estimator.

The Kalman estimator design problem is treated as a
weighted recursive least squares estimation problem. The
feedback gain matrix K is based on minimizing the estima-
tion error e½k� ¼ x½k� � bx½k�. The equations for computing
the feedback gain K have a striking resemblance to the
equations for computing the optimal LQ gain. The Kalman
filter implementation requires a priori knowledge of the
process noise magnitude Rw and the measurement noise
magnitude Rv. The value for Rv in a given actual design
problem can be chosen based on the sensor accuracy. Here it
should also be noted that the assumption about the process
noise being the white noise is introduced in order to simplify
solving of the optimization problem. Physically Rv is often
associated with unknown disturbances. In the case when a
random disturbance is a colored noise (time correlated), it
can be accurately modeled by the augmenting Φ with a
coloring filter which converts a white noise input into a time
correlated noise. Due to the complexity it is not done in
practice. Rather, the disturbances are assumed to be white
and the noise intensity is adjusted to give acceptable results
in the presence of expected disturbances.

In the investigated problem, the state estimator was
implemented in the feedback closed-loop control system
with the estimator gain K calculated based on the Kalman
filter and the feedback gain matrix L calculated for the
optimal LQ controller. Block diagram of the control system
is represented in Fig. 5.

Based on the separation principle of the controller/ob-
server design, the feedback gain K for the state estimation
was determined using the Kalman filter algorithm, and
implemented for the state estimation within the closed-
loop system in Fig. 5. Estimated states, which cannot be
measured directly, are multiplied by the feedback gain L and
fed back to the system input, as the control input u. Together
with the output measurements y, control input u represents
at the same time the input to the state estimator. The advan-
tage of the Kalman estimator implemented here, over the
full order state observer can be seen in the fact, that the state
estimation is possible despite the process or the measure-
ment noise. Assumption that the process and/or the mea-
surement noise can be modeled as the white noise, where
only the process and the measurement noise covariances are
required as the noise parameters for the input to the estima-
tor algorithm design, makes the Kalman estimator a suitable
solution to a wide range of practical estimation problems,
where implementing merely the full-order observer would
not give satisfactory results in the presence of the measure-
ment and/or the process noise.

It is necessary to emphasize at this point, that the concept
of the Kalman estimator relies on the state estimation where
only control inputs u and the output measurements y togeth-
er with the given noise covariances Rw and Rv are required
for the estimation of the states in the presence of process/
plant and/or measurement noise. Excitations assumed to be
the white noise cover a wide range of excitations which can

Fig. 5 Block diagram of the feedback control system with state
estimator
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Fig. 6 Simulated sensor signal
(velocity) and control voltage
signals of uncontrolled and
controlled (after 4 s) system,
due to a harmonic excitation
force: FðtÞ ¼ A sinð2p � f itÞ;
(a) f1013.4 Hz, (b) f2072.5 Hz,
(c) f30198 Hz, (d) f40392 Hz
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be met in many practical problems. As such they are not
considered as elements of the known inputs to the plant or
estimator in the case of the Kalman estimator design (as
it would be the case with the full-order observer, which
should be designed to operate in the presence of dis-
turbances). In the Kalman estimator design procedure,
the information about the process/measurement noise is
required only in terms of the given parameters Rw and
Rv, the covariances of the process and the measurement
noise, respectively. This is what makes the Kalman
estimator so powerful and superior over the full-order
state observer for the much realistic implementation
cases in the presence of noise.

6 Investigation results

The objective of this paper is to show the complete proce-
dure of the smart structures control using selected methods
for the model development and controller design presented
in the previous sections. The aim of the implementation is
the control of a smart piezoelectric structure in the sense of

vibration suppression, as described in section 2. Through the
experimental application of control and simulation results,
the possibilities of the successful vibration control are
shown.

6.1 Closed loop simulation

For the solution of the control task an optimal LQ controller
in combination with a Kalman filter is designed (based on
the procedure in Section 4) in such a way that the vibration
amplitudes due to periodic excitation forces with frequen-
cies corresponding to the eigenfrequencies of the clamped
beam, are significantly suppressed in comparison with the
uncontrolled case. Simulation results of the controller de-
sign, with periodical and random excitation forces are rep-
resented in Figs. 6 and 7.

Simulated exciting forces FðtÞ ¼ A sinð2p � f itÞ exerted
to the free end of the beam were chosen with regard to the
resonant bending eigenfrequencies fi of the beam. The opti-
mal LQ control system was designed with the weighting

matrices Q ¼ CTC and R ¼ 0:1� I4�4 . For the Kalman
filter design, it is assumed in the state estimation procedure
that only the sensor voltage (vibration velocity) is measured.
Furthermore, a plant noise vector (force disturbance) with
Rw ¼ 100� I4�4 and a sensor noise disturbance with
Rv ¼ 10 are considered for the definition of the noise
correlation matrices and Kalman feedback gain design.

Diagram 6(a) – (d) represents the uncontrolled and con-
trolled (after 4 s) vibration velocity of the beam, due to
harmonic excitation forces with frequencies corresponding
to the 1st, 2nd, 3rd and 4th bending eigenfrequency of the
clamped beam respectively, as well as the corresponding
control signals (actuating voltages on piezo patches). The
uncontrolled and controlled (after 4 s) vibration velocity of
the beam due to a white noise force disturbance and the
corresponding actuating voltages on piezo actuator patches
are represented in Fig. 7. In both cases, periodical and
random excitation, a significant reduction of the vibration
magnitudes can be observed in the presence of the
controller.

Fig. 8 Experimental rig for validation of the control system based on
the identified model

Fig. 7 Simulated sensor signal
(velocity) and control voltage
signals of uncontrolled and con-
trolled (after 4 s) system, due to
a white noise force disturbance
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6.2 Experimental implementation

For the purpose of experimental validation, the identi-
fied model coupled with the Kalman state estimator and
optimal LQ controller designed based on the identified
model are implemented within a real time configuration.
The closed loop system for the active vibration control
of the beam is implemented on the real time data

acquisition platform of the dSPACE system with sam-
pling frequency of 1 kHz. The task of the control is to
suppress the vibration magnitudes of the sensor signal
in time domain an accordingly to reduce the resonance
peaks in the frequency domain. Therefore, investigations
are carried out both in the time domain and in the
frequency domain by means of the experimental rig
represented in Fig. 8.

Fig. 9 Experimentally
determined sensor signal
(velocity) and control voltage
signals of uncontrolled and
controlled (after 4 s) system,
due to a harmonic excitation
force: FðtÞ ¼ A sinð2p � f itÞ;
(a) f1014.5 Hz, (b) f2072.6 Hz,
(c) f30202 Hz
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For the analysis in the time domain the shaker, repre-
sented in Fig. 8, is used. The shaker is connected to the tip
of beam with a rubber band, in order to excite the beam with
periodic forces. The sinusoidal excitation signal for the
shaker is generated in Simulink and lead out through the
dSPACE DAC board. The frequency of the sine signal
corresponds to the eigenfrequencies to be controlled. The
excitation frequencies for the experimental investigation
were fine adjusted experimentally to the values which cause
greatest vibration magnitudes, so that disturbances corre-
spond to the system’s actual resonant states. The response
of the sensor for the uncontrolled and controlled system
(after 4 s) and the corresponding control signals in the
time domain are represented in Fig. 9. Diagrams shown
on the left hand side represent the velocity magnitudes
of the beam measured by dSPACE ADC board and
diagrams shown on the right hand side represent the
voltages at the piezo actuator patches generated by
dSPACE DAC board. These results were obtained using
the hardware-in-the-loop system with the dSPACE Real-
Time Interface platform. The experimental results show,
that the application of the control results in an obvious
reduction of the vibration amplitudes.

Successful performance of the controlled system is dem-
onstrated for the case of the initial displacement disturbance
type as well. Free vibrations of the beam caused by an initial
displacement applied to the tip of the beam are comparable
with impulse disturbance vibrations. The free vibration re-
sponse (velocity) of the open-loop and closed-loop system
subjected to an initial displacement of 8 mm is measured
using the laser vibrometer at the point, which is located
22 mm away from the free end, and it is represented in
Fig. 10. Designed controller attenuates significantly the
magnitudes of the free end displacement. The closed-loop
5 % settling time is equal to 0.3 s, which reveals a great
improvement of the response attenuation when compared
with the open-loop one (7.9 s).

The effect of the control is also documented in the fre-
quency domain by obtaining frequency response functions
from measured input and output signals. The frequency
response functions between the sensor signal (laser vibrom-
eter) as the output and the impulse excitation by an impact
hammer as an input were determined using the experimental
rig represented in Fig. 8, in this case with the hammer
instead of shaker. The free end of the beam was excited
using the impact hammer and the response from the sensor
was measured, for both controlled and uncontrolled case.
Controlled and uncontrolled frequency response functions
are represented in Fig. 11 for the frequency range of up to
500 Hz. The figure shows significant vibration suppression
in terms of the peak amplitudes reduction for the controlled
eigenfrequencies. Especially in the lower frequency range,
the designed controller significantly reduces the peak mag-
nitude at the first resonant frequency for approximately
32 dB.

7 Conclusion

This paper presents a design approach for actively con-
trolled smart structures, with the focus on structural control
with piezoelectric materials as active elements. In the over-
all design approach several phases are considered, such as
modeling, controller design, simulation and experimental
implementation. The main control objective is the active
vibration suppression of a smart structure, cantilever alumi-
num beam, controlled by four piezoelectric ceramic patches.
For the active vibration control of the structure, the bending
vibration velocity is measured by a laser Doppler vibrom-
eter, which provides the feedback signal in the active control
algorithm.

A subspace-based identification procedure is used to
obtain a state-space model of the system from its input–
output measurement data. Through the comparison of mea-
sured and model-based assessed eigenfrequencies, a good

Fig. 10 Free vibration response (velocity) of the controlled and un-
controlled system Fig. 11 Frequency response of the controlled and uncontrolled system
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representation of the structural dynamics by the identified
model was demonstrated and it was shown to be a valuable
tool for the controller design. In this study, an optimal LQ
feedback strategy is used for the controller design, which
provides the designer with lots of flexibility to perform
trade-offs among various performance criteria. The optimal
LQ controller requires a full knowledge of the state varia-
bles, in order to generate the control input. Therefore, a
Kalman filter is used as an observer, in order to estimate
the unmeasurable state variables.

Control problems treated in this work assume a specific
class of excitations, which from the vibration point of view
can be regarded as a worst study case due to the possibility
of resonance. Those are periodic sinusoidal excitations with
frequencies corresponding to the eigenfrequencies in the
frequency range of interest. The suppression of vibrations
caused by such excitations and disturbances represents
therefore an important task which is, in this case, demon-
strated to be successfully accomplished by applying the
control system to the considered piezoelectric smart struc-
ture. However, in some cases observation and control spill-
over problems related with unobserved model dynamics
may compromise stability, if the unmodeled modes are
excited by the controller.
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